Received: October 7, 1982; accepted: November 18, 1982

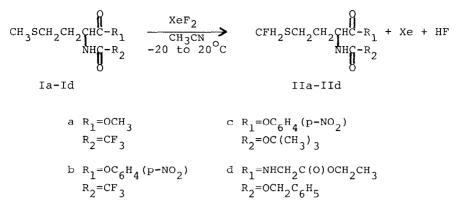
FLUORINATION OF METHIONINE AND METHIONYLGLYCINE DERIVATIVES WITH XENON DIFLUORIDE*

A.F. JANZEN, P.M.C. WANG AND A.E. LEMIRE

Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

SUMMARY

A mild procedure for the fluorination of methionine and methionylglycine derivatives is described. Fluorination with xenon difluoride occurs at -20 to 20° C within 20-30 minutes in 70-90% yield, exclusively at the methylthic position. The products were characterized by elemental analysis, fluorine, proton and carbon NMR spectroscopy.


RESULTS AND DISCUSSION

The selective introduction of fluorine-19 or fluorine-18 labels into organic and biomolecules as probes for mechanistic and metabolic studies is still somewhat limited by the availability of effective fluorinating agents. The finding that XeF₂ is suitable for the α -fluorination of sulfides [1,2], combined with the recent preparation of fluorine-18 XeF₂ [3], suggests that XeF₂ might be useful for the labelling of other alkylthio derivatives and we wish to report a convenient method of fluorination of methionine and methionylglycine derivatives.

*Presented at the Fifth Winter Fluorine Conference, Daytona Beach, Florida, U.S.A., February 1-6, 1981.

0022-1139/83/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

Fluorination with xenon difluoride produces the fluoromethionine (IIa-IIc) and fluoromethionylglycine (IId) derivatives, as well as xenon gas and hydrogen fluoride. In a typical reaction, N-carbobenzoxy-L-methionylglycine ethyl ester (Id) (0.43 mmol) in acetonitrile (1 mL) in a syringe was injected onto a solution of xenon difluoride (0.45 mmol) in acetonitrile (0.5 mL) in a Teflon bottle with a rubber cap at -20°C. Xenon gas evolved on warming the sample to room temperature and the reaction, as conveniently monitored by the rise of the syringe plunger, was complete within 20-30 min. At the completion of the reaction, HF was destroyed by the addition of (Me₃Si)₂NH [4] (Safety note: Although no violent reactions were encountered in this work, the technique of destroying excess HF with $(Me_3Si)_2NH$ is potentially hazardous because XeF, reacts explosively with some silicon-nitrogen compounds [5]). Removal of volatile material under vacuum left behind a solid which was recrystallized from benzene and petroleum ether, washed with cold toluene and dried under vacuum to give a white solid, identified as IId, mp 99-100⁰C. Analysis [6]: Found: C, 52.82; H, 6.03; N, 7.22%. C₁₇H₂₃FO₅N₂S requires C, 52.83; H, 6.00; N, 7.25%. A similar procedure was used for the preparation of compounds IIa-IIc.

The NMR spectral properties of the CFH_2S - group in IIa-IId are very similar to those of the CFH_2S - group in simple mono-fluoroalkyl sulfides [2]. For the CFH_2S - group, $\delta_{\rm H}$ 5.2-5.3 ppm (IIa-IId), $\delta_{\rm F}$ -184 ppm (IId), $^2J_{\rm HF}$ 52.4-53.1 Hz (IIa-IId),

 ${}^{4}J_{FH}$ 2.4 Hz (IIc), δ_{C} 88.9 ppm (IId), and ${}^{1}J_{CF}$ 209.6 Hz (IId). NMR examination showed that products IIa-IId were formed in yields of 70-90%, but no evidence was found for the formation of products with CF₂HS- or CH₂SCFH- substituents.

The stability of IIa-IId was briefly investigated and, in general, the thermal stability appeared comparable to that of the non-fluorinated starting compounds. A recrystallized sample of IId was kept in a sealed tube at 0° C for 3 months without sign of decomposition. Under aqueous NaOH or Et₃N conditions, the CFH₂S- group remained intact, as judged by NMR, but aqueous or non-aqueous solutions of HF, HCl or CF₃COOH produced decomposition with loss of the fluoride signal in the NMR spectrum.

ACKNOWLEDGEMENT

The financial assistance of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

REFERENCES

- 1 M. Zupan, J. Fluorine Chem., 8 (1976) 305.
- 2 R.K. Marat and A.F. Janzen, Can. J. Chem., 55 (1977) 3031.
- 3 G. Schrobilgen, G. Firnau, R. Chirakal and E.S. Garnett, J. Chem. Soc. Chem. Commun., (1981) 198.
- 4 R.K. Marat and A.F. Janzen, Can. J. Chem., 55 (1977) 1167.
- 5 J.A. Gibson, R.K. Marat and A.F. Janzen, Can. J. Chem., <u>53</u> (1975) 3044.
- 6 MICRO-TECH Laboratories, Skokie, Illinois and Analytische Laboratorien, Engelskirchen, F.R.G.